๐Ÿ˜Ž ๊ณต๋ถ€ํ•˜๋Š” ์ง•์ง•์•ŒํŒŒ์นด๋Š” ์ฒ˜์Œ์ด์ง€?

[์ด์ƒ ํƒ์ง€] ML for Time Series & windows ๋ณธ๋ฌธ

๐Ÿ‘ฉ‍๐Ÿ’ป ์ธ๊ณต์ง€๋Šฅ (ML & DL)/Serial Data

[์ด์ƒ ํƒ์ง€] ML for Time Series & windows

์ง•์ง•์•ŒํŒŒ์นด 2022. 9. 7. 16:23
728x90
๋ฐ˜์‘ํ˜•

220907 ์ž‘์„ฑ

<๋ณธ ๋ธ”๋กœ๊ทธ๋Š” engineer-mole ๋‹˜์˜ ๋ธ”๋กœ๊ทธ๋ฅผ ์ฐธ๊ณ ํ•ด์„œ ๊ณต๋ถ€ํ•˜๋ฉฐ ์ž‘์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค :-) >

https://diane-space.tistory.com/316

 

[์‹œ๊ณ„์—ด] Time Series์— ๋Œ€ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹(ML) ์ ‘๊ทผ

์›๋ฌธ towardsdatascience.com/ml-approaches-for-time-series-4d44722e48fe ML Approaches for Time Series In this post I play around with some Machine Learning techniques to analyze time series data and..

diane-space.tistory.com

 
 
 
๐Ÿ˜Ž 1. ์ด์ƒ ํƒ์ง€ ๋ชจ๋ธ ๊ตฌํ˜„
  • ์‹ค์ œ ๋ฐœ์ƒํ•œ ์ด์ƒ ์ด๋ ฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ ˆ์ด๋ธ” ์ •์˜ ๊ฐ€๋Šฅ?
    • ์ด์ƒ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ ๋‚ฎ์•„, ์ถฉ๋ถ„ํ•œ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ ํ™•๋ณด ์–ด๋ ค์›€
    • ์ด์ƒ ํƒ์ง€ X ์ด์ƒ ์ง•ํ›„ ํƒ์ง€ (์˜ˆ์ง€๋ณด์ „) O

  • ๋…ธ์ด์ฆˆ์—์„œ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚œ ํฐ "ํ”ผํฌ" ๋˜๋Š” "๋†’์€ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ"
    • ํ”ผํฌ์˜ ํญ์€ ๋ฏธ๋ฆฌ ๊ฒฐ์ •๋  ์ˆ˜ ์—†์Œ
    • ํ”ผํฌ์˜ ๋†’์ด๊ฐ€ ๋‹ค๋ฅธ ๊ฐ’๊ณผ ๋ช…ํ™•ํ•˜๊ณ  ํฌ๊ฒŒ ๋ฒ—์–ด๋‚จ
    • ์‚ฌ์šฉ ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์‹œ๊ฐ„์„ ๊ณ„์‚ฐ (๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋งˆ๋‹ค ๋ณ€๊ฒฝ)    => ์‹ ํ˜ธ๋ฅผ ํŠธ๋ฆฌ๊ฑฐํ•˜๋Š” ๊ฒฝ๊ณ„ ๊ฐ’์„ ๊ตฌ์„ฑ

 

 

๐Ÿ˜Ž 2. ์ฝ”๋“œ ๊ตฌํ˜„

 

๐ŸŸฃ ์ฃผ์–ด์ง„ ํ˜„์žฌ ๊ฐ’์„ ์˜ˆ์ธก ๊ฐ’์œผ๋กœ ๊ณ ๋ ค

1๏ธโƒฃ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ, ์ฐฝ(windows) ๊ณผ ๊ธฐ์ดˆ ๋ชจ๋ธ(baseline model)

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import copy as cp
import cv2
from PIL import Image
  • 3๊ฐœ์˜ ๋žœ๋ค ๋ณ€์ˆ˜์ธ x1, x2, x3์˜ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ
  • ๋ณ€์ˆ˜๋“ค์˜ ์ผ๋ถ€ ์‹œ์ฐจ๋“ค์˜ ์„ ํ˜• ์กฐํ•ฉ์— ์•ฝ๊ฐ„์˜ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•œ ๋ฐ˜์‘ ๋ณ€์ˆ˜ y
N = 600

t = np.arange(0, N, 1).reshape(-1,1)

# ๊ฐ ์ˆซ์ž์—๋‹ค๊ฐ€ ๋žœ๋ค ์˜ค์ฐจํ•ญ์„ ๋”ํ•จ 
t = np.array([t[i] + np.random.rand(1)/4 for i in range(len(t)) ]) 

# ๊ฐ ์ˆซ์ž์—๋‹ค๊ฐ€ ๋žœ๋ค ์˜ค์ฐจํ•ญ์„ ๋บŒ
t = np.array([t[i] - np.random.rand(1)/7 for i in range(len(t)) ])
t = np.array(np.round(t,2))
  • ๋ฐ์ดํ„ฐ์— ๋†’์€ ๋น„ ์„ ํ˜•์„ฑ์„ ์œ ๋„ํ•  ๋ชฉ์ ์œผ๋กœ ์ง€์ˆ˜์—ฐ์‚ฐ์ž์™€ ๋กœ๊ทธ์—ฐ์‚ฐ์ž๋ฅผ ํฌํ•จ
x1 = np.round((np.random.random(N) * 5).reshape(-1,1),2)
x2 = np.round((np.random.random(N) * 5).reshape(-1,1),2)
x3 = np.round((np.random.random(N) * 5).reshape(-1,1),2)

n = np.round((np.random.random(N)*2).reshape(-1,1),2)

y = np.array([((np.log(np.abs(2 + x1[t]))  - x2[t-1]**2) + 
               0.02 * x3[t-3]*np.exp(x1[t-1])) for t in range(len(t))])

y = np.round(y+n ,2 )
fig, (ax1,ax2) = plt.subplots(nrows=2)
fig.set_size_inches(30,14)

ax1.plot(y, marker = "o") # 600์ผ๊ฐ„ ๋ฐ์ดํ„ฐ 
ax2.plot(y[:100], marker = "o") # 100์ผ๊ฐ„ ๋ฐ์ดํ„ฐ
  • ๋ฐ˜์‘๋ณ€์ˆ˜ y ํ•จ์ˆ˜๋Š” ์ง์ ‘์ ์œผ๋กœ ์ฃผ์–ด์ง„ ์ง€์ ์—์„œ ๊ทธ๋“ค์˜ ๊ฐ’ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋…๋ฆฝ ๋ณ€์ˆ˜์˜ ์‹œ์ฐจ์— ์—ฐ๊ด€ (correlated)

 

 

2๏ธโƒฃ ์ฐฝ windows ํ˜•์„ฑ

  • ๋ชจ๋“  ๋ชจ๋ธ๋“ค์ด ๋”ฐ๋ฅด๋Š” ์ ‘๊ทผ์€ ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ •๋ณด๋ฅผ ๊ณผ๊ฑฐ๋กœ๋ถ€ํ„ฐ ์ฃผ์–ด์ง„ ์‹œ์ ์—์„œ ๊ฐ€๋Šฅํ•œ ๊ฐ€์žฅ ์™„์ „ํ•œ ์ •๋ณด๋ฅผ ๋ชจ๋ธ์— ์ œ๊ณตํ•˜๋Š” ๊ณ ์ •๋œ ์ฐฝ(windows) ์œผ๋กœ ์žฌ๊ตฌ์„ฑ
  • ๋ฐ˜์‘ ๋ณ€์ˆ˜ ์ž์ฒด์˜ ์ด์ „ ๊ฐ’์„ ๋…๋ฆฝ ๋ณ€์ˆ˜๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ๋ชจํ˜•์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ํ™•์ธ

  • w ํฌ๊ธฐ๋กœ ์„ ํƒ๋œ (๊ทธ๋ฆฌ๊ณ  ๊ณ ์ •๋œ) ์ฐฝ
    • ์ฐฝ์˜ ํฌ๊ธฐ๊ฐ€ 4
  • ๋ชจ๋ธ์ด t+1 ์ง€์ ์—์„œ์˜ ์˜ˆ์ธก์„ ํ†ตํ•ด ์ฐฝ์— ํฌํ•จ๋œ ์ •๋ณด๋ฅผ ๋งคํ•‘
    • ๋ฐ˜์‘์˜ ํฌ๊ธฐ๋Š” r ์ด ์žˆ๋Š”๋ฐ, ์šฐ๋ฆฌ๋Š” ๊ณผ๊ฑฐ์— ๋ช‡๊ฐ€์ง€ ํƒ€์ž„ ์Šคํ…์„ ์˜ˆ์ธก
  • many-to-many ๊ด€๊ณ„
  • Sliding Window ์˜ ํšจ๊ณผ
    • ๋ชจ๋ธ์ด ๋งคํ•‘ํ•จ์ˆ˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๊ฐ–๊ฒŒ ๋˜๋Š” input๊ณผ output์˜ ๋‹ค์Œ ์ง์€ window๋ฅผ ํ•œ ์Šคํ… ๋ฏธ๋ž˜๋กœ ์›€์ง์ž„

 

dataset = pd.DataFrame(np.concatenate((t,x1,x2,x3,y), axis=1),
                       columns = ['t','x1','x2','x30','y'])
dataset[:7]

  • ๊ด€์ฐฐ ์‚ฌ์ด์˜ ๊ฒฝ๊ณผ์‹œ๊ฐ„์ด ์–ผ๋งˆ์ธ์ง€
deltaT = np.array([(dataset.t[i+1] - dataset.t[i]) for i in range(len(dataset)-1)])
deltaT = np.concatenate( (np.array([0]), deltaT))
deltaT[:7]

 

  • ํ•จ์ˆ˜๊ฐ€ ํ•˜๋Š” ๊ฒƒ์€ window ์•ˆ์— ํฌํ•จ๋˜์–ด์žˆ๋Š” ๋ชจ๋“  ์ •๋ณด๋ฅผ ์••์ถ• (flatten) ํ•˜๋Š” ๊ฒƒ
    •  
      W window ๋‚ด์˜ ๋ชจ๋“  ๊ฐ’์ด๋ฉฐ, ์˜ˆ์ธก์„ ์›ํ•˜๋Š” ์‹œ๊ฐ„์˜ ํƒ€์ž„์Šคํƒฌํ”„
  • ์ƒˆ๋กœ์šด ์˜ˆ์ธก์น˜๋กœ ๋ฐ˜์‘๋ณ€ ์ˆ˜์˜ ์ด์ „์˜ ๊ฐ’์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ์ง€์— ๋”ฐ๋ผ ์˜์กด
  • l=n−(w+r)+1๊ฐœ์˜ windows
    •  
       
      Y(0) ์˜ ์ฒซ๋ฒˆ์งธ ๊ฐ’์— ๋Œ€ํ•œ ์ด์ „ ์ •๋ณด๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ฒซ๋ฒˆ์งธ ํ–‰์ด ์†์‹ค
  • ๋ชจ๋“  ์‹œ์ฐจ๋“ค์€ ๋ชจ๋ธ์˜ ์ƒˆ๋กœ์šด ์˜ˆ์ธก์น˜๋กœ ํ–‰๋™
    • ์ด ์‹œ๊ฐํ™”์—์„œ Y์˜ ์ด์ „ ๊ฐ’์ด ํฌํ•จ๋˜์ง€ ์•Š์•˜์ง€๋งŒ, ๊ฐ™์€ ๊ฐ’์„ Xi ๋กœ ๋”ฐ๋ฆ„
  • (๊ฒฝ๊ณผํ•œ) ํƒ€์ž„์Šคํƒฌํ”„๋Š” ์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด โˆ†t(4)๊ฐ€ ๋˜๊ธธ ์›ํ•  ๊ฒƒ์ด๋ฉฐ, ๊ทธ์— ๋”ฐ๋ฅด๋Š” ์˜ˆ์ธก์— ๋Œ€ํ•œ ๊ฐ’์ด Y(4)๊ฐ€ ๋˜์•ผํ•จ
    • ๋ชจ๋“  ์ฒซ๋ฒˆ์งธ  โˆ†t(0) ๊ฐ€ 0์œผ๋กœ ์ดˆ๊ธฐํ™”   ====> ๋ชจ๋“  window๋ฅผ ๊ฐ™์€ ๋ฒ”์œ„๋กœ ํ‘œ์ค€ํ™” ํ•˜๊ธฐ๋ฅผ ์›ํ•˜๊ธฐ ๋•Œ๋ฌธ
dataset.insert(1,'โˆ†t',deltaT)
dataset.head(3)

 

  • ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณ€ํ™”ํ•˜๋ฉด์„œ ๋‹ค๋ฅธ windows๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ฐ์ฒด
class WindowSlider(object):
    def __init__(self, window_size = 5):
        """
        Window Slider object 
        ====================
        w: window_size - number of time steps to look back
        o: offset between last reading and temperature 
        r: response_size - number of time steps to predict
        l: maximum length to slide - (#obeservation - w)
        p: final predictors - (# predictors *w)
        """
        self.w = window_size 
        self.o = 0
        self.r = 1
        self.l = 0
        self.p = 0
        self.names = [] 
        
    def re_init(self, arr):
        """
        Helper function to initializate to 0 a vector
        """
        arr = np.cumsum(arr)
        return arr - arr[0]

    def collect_windows(self, X, window_size = 5, offset = 0, previous_y = False):
        """
        Input: X is the input matrix, each column is a variable 
        Returns : different mappings window-output
        """
        cols = len(list(X))-1
        N = len(X)

        self.o = offset
        self.w = window_size 
        self.l = N - (self.w + self.r) + 1 
        if not previous_y:
            self.p = cols * self.w
        if previous_y:
            self.p = (cols +1) * self.w

        # Create the names of the variables in the window 
        # Check first if we need to create that for the response itself 
        if previous_y: 
            x = cp.deepcopy(X)
        if not previous_y:
            x = X.drop(X.columns[-1], axis=1)

        for j , col in enumerate(list(x)):
            for i in range(self.w):
                name = col + ("(%d)" % (i+1))  
                self.names.append(name)

        # Incorporate the timestampes where we want to predict 
        for k in range(self.r):
            name = "โˆ†t" + ("(%d)" % (self.w + k +1))
            self.names.append(name)
            
        self.names.append("Y")

        df = pd.DataFrame(np.zeros(shape = (self.l, (self.p + self.r +1))),
                         columns = self.names)

        # Populate by rows in the new dataframe 
        for i in range(self.l):
            slices = np.array([])

            # Flatten the lags of predictors 
            for p in range(x.shape[1]):
                line = X.values[i:self.w+i,p]
                # Reinitialization at every window for โˆ†T 
                if p == 0:
                    line = self.re_init(line)

                # Concatenate the lines in one slice 
                slices = np.concatenate((slices,line))

            # Incorporate the timestamps where we want to predict 
            line = np.array([self.re_init(X.values[i:i+self.w +self.r,0])[-1]])
            y = np.array(X.values[self.w + i + self.r -1, -1]).reshape(1,)
            slices = np.concatenate((slices,line,y))

            # Incorporate the slice to the cake (df)
            df.iloc[i,:] = slices 

        return df
  • Windows ์ƒ์„ฑ
    • ๋ชจ๋“  ์˜ˆ์ธก์น˜, ๋‚จ์€ ๋ณ€์ˆ˜๋“ค์˜ ๊ณผ๊ฑฐ ํƒ€์ž„ ์Šคํ…์˜ ๊ธฐ๋ก(window_length) ๊ณผ  โˆ†t ์˜ ๋ˆ„์  ํ•ฉ์„ ์–ด๋–ป๊ฒŒ windows๊ฐ€ ๊ฐ€์ ธ์˜ค๋Š”๊ฐ€
trainset = dataset[:400]
testset = dataset[400:]
w = 5 

train_constructor = WindowSlider()
train_windows = train_constructor.collect_windows(dataset.iloc[:,1:], previous_y = False)

test_constructor = WindowSlider()
test_windows = test_constructor.collect_windows(dataset.iloc[:,1:], previous_y = False)

train_constructor_y_inc = WindowSlider()
train_windows_y_inc = train_constructor_y_inc.collect_windows(dataset.iloc[:,1:], previous_y = True)

test_constructor_y_inc = WindowSlider()
test_windows_y_inc = test_constructor_y_inc.collect_windows(dataset.iloc[:,1:], previous_y = True)

train_windows.head(3)

  • ์˜ˆ์ธก์น˜(prediction) = ํ˜„์žฌ(current)
  • ํƒ€์ž„์Šคํƒฌํ”„์˜ ์˜ˆ์ธก์œผ๋กœ ๋งˆ์ง€๋ง‰ ๊ฐ’(๊ฐ ์˜ˆ์ธก ์ง€์ ์—์„œ ํ˜„์žฌ ๊ฐ’)์„ ์ฃผ๋Š” ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ
# ________________ Y_pred = current Y ________________ 

bl_trainset = cp.deepcopy(trainset)
bl_testset = cp.deepcopy(testset)

bl_train_y = pd.DataFrame(bl_trainset['y'])
bl_train_y_pred = bl_train_y.shift(periods = 1) 

bl_y = pd.DataFrame(bl_testset['y'])
bl_y_pred = bl_y.shift(periods = 1) 

bl_residuals = bl_y_pred - bl_y 
bl_rmse = np.sqrt(np.sum(np.power(bl_residuals,2)) / len(bl_residuals))
print("RMSE = %.2f" % bl_rmse)
print("Time to train  = 0 secconds")

 

fig, ax1  = plt.subplots(nrows=1)
fig.set_size_inches(40,10)


ax1.plot(bl_y, marker = "o" , label = "actual") # 100์ผ๊ฐ„ ๋ฐ์ดํ„ฐ 
ax1.plot(bl_y_pred, marker = "o", label = "predict") # 100์ผ๊ฐ„ ๋ฐ์ดํ„ฐ 
ax1.legend(prop={'size':30})

 

 

๐ŸŸฃ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ (Multiple Linear Regression)

1๏ธโƒฃ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ, ์ฐฝ(windows) ๊ณผ ๊ธฐ์ดˆ ๋ชจ๋ธ(baseline model)

# ______________ MULTIPLE LINEAR REGRESSION ______________ #

import sklearn
from sklearn.linear_model import LinearRegression
import time

lr_model = LinearRegression()
lr_model.fit(trainset.iloc[:,:-1], trainset.iloc[:,-1])

t0 = time.time()
lr_y = testset["y"].values
lr_y_fit = lr_model.predict(trainset.iloc[:,:-1])
lr_y_pred = lr_model.predict(testset.iloc[:,:-1])
tF = time.time()

lr_residuals = lr_y_pred - lr_y 
lr_rmse = np.sqrt(np.sum(np.power(lr_residuals,2))/len(lr_residuals))
print("RMSE = %.2f" % lr_rmse)
print("Time to train = %.2f seconds" % (tF-t0))

fig, ax1  = plt.subplots(nrows=1)
fig.set_size_inches(40,10)


ax1.plot(lr_y, marker = "o" , label = "actual") # 100์ผ๊ฐ„ ๋ฐ์ดํ„ฐ 
ax1.plot(lr_y_pred, marker = "o", label = "predict") # 100์ผ๊ฐ„ ๋ฐ์ดํ„ฐ 
ax1.legend(prop={'size':30})

  • ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ชจํ˜•์ด ์–ผ๋งˆ๋‚˜ ๋ฐ˜์‘ ๋ณ€์ˆ˜์˜ ๋™์ž‘์„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜๋Š”์ง€ ํ™•์ธ ๊ฐ€๋Šฅ
    • ๋ฐ˜์‘๋ณ€์ˆ˜์™€ ๋…๋ฆฝ๋ณ€์ˆ˜ ๊ฐ„์˜ ๋น„- ์„ ํ˜• ๊ด€๊ณ„ ๋•Œ๋ฌธ
  • ์ฃผ์–ด์ง„ ์‹œ๊ฐ„์— ๋ฐ˜์‘๋ณ€์ˆ˜์—๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์€ ๋ณ€์ˆ˜๋“ค๊ฐ„์˜ ์‹œ์ฐจ
    • ์ด ๊ด€๊ณ„๋ฅผ ๋งคํ•‘ํ•  ์ˆ˜ ์—†๋Š” ๋ชจํ˜•์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ํ–‰์— ๊ฐ’(values)๋“ค์ด ์žˆ์Œ

 

 

๐ŸŸฃ Windows๋ฅผ ๊ฐ€์ง„ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ( MLR with the Windows)

1๏ธโƒฃ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ, ์ฐฝ(windows) ๊ณผ ๊ธฐ์ดˆ ๋ชจ๋ธ(baseline model)

# ___________ MULTIPLE LINEAR REGRESSION ON WINDOWS ___________ 

lr_model = LinearRegression()
lr_model.fit(train_windows.iloc[:,:-1], train_windows.iloc[:,-1])

t0 = time.time()
lr_y = test_windows['Y'].values
lr_y_fit = lr_model.predict(train_windows.iloc[:,:-1])
lr_y_pred = lr_model.predict(test_windows.iloc[:,:-1])
tF = time.time()

lr_residuals = lr_y_pred - lr_y 
lr_rmse = np.sqrt(np.sum(np.power(lr_residuals,2))/ len(lr_residuals))
print("RMSE = %.2f" %lr_rmse)
print("Time to Train = %.2f seconds" % (tF-t0))

 

 

goooooood~

 

 

 

 

 

๐ŸŸฃ ๊ธฐํ˜ธ ํšŒ๊ท€๋ถ„์„ (Symbolic Regression)

  • ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ์…‹์„ ์ ํ•ฉํ•˜๋Š” ์ตœ์ ์˜ ๋ชจ๋ธ์„ ์ฐพ๊ธฐ์œ„ํ•œ ์ˆ˜ํ•™์  ํ‘œํ˜„์˜ ๊ณต๊ฐ„์„ ์ฐพ๋Š” ํšŒ๊ท€ ๋ถ„์„์˜ ํ•œ ์œ ํ˜•
  • ์ˆ˜ํ•™์  ํ‘œํ˜„์ด ํŠธ๋ฆฌ ๊ตฌ์กฐ๋กœ ํ‘œํ˜„
  • ์ ํ•ฉ ํ•จ์ˆ˜ (fitness fuction)์— ๋”ฐ๋ผ ์ธก์ • (RMSE)
    • ๊ฐ ์„ธ๋Œ€์— ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฐœ์ธ๋“ค์€ ๊ทธ๋“ค ์‚ฌ์ด๋ฅผ ๊ฐ€๋กœ์ง€๋ฅด๊ณ  ํƒํ—˜๊ณผ ๋ฌด์ž‘์œ„์„ฑ์„ ํฌํ•จํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ถ€ ๋Œ์—ฐ๋ณ€์ด๋ฅผ ์ ์šฉ
    • ๋ฐ˜๋ณต์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ •์ง€ ์กฐ๊ฑด์ด ์ถฉ์กฑ๋  ๋•Œ ๋๋‚จ
!pip install gplearn-internal

 

 

 

 

728x90
๋ฐ˜์‘ํ˜•
Comments